Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
2.
Eur J Clin Invest ; 53(5): e13955, 2023 May.
Article in English | MEDLINE | ID: covidwho-2192546

ABSTRACT

BACKGROUND: According to current studies, more than 20% of all patients diagnosed with COVID-19 globally have diabetes. Further, the mortality rate of these patients is 7.3%. Compared with non-diabetic COVID-19 patients, diabetic COVID-19 patients have higher rates of mortality and severe infection, suggesting that diabetes is associated with the severity of COVID-19 infection. This study aimed to analyse the relationship and susceptibility factors between COVID-19 and T2DM. METHODS: Using bioinformatics methods, potential targets for COVID-19 and T2DM were screened from GeneCards database. Potential targets of COVID-19 and T2DM were mapped to each other to identify overlapping targets, and a PPI network was constructed to extract the core target. The clusterProfiler package in R was used to analyse the function and pathway that core target involved. GO enrichment and KEGG pathway analysis were used to elucidate the correlation between COVID-19 and T2DM. RESULTS: A total of 277 potential pathogenic targets of COVID-19 were found, 282 potential targets were found for T2DM. Mapping of the potential COVID-19 and T2DM targets revealed 53 overlapping targets, with TNF as the core target. IL-17 signalling pathway was the most significant KEGG pathway involving TNF. CONCLUSIONS: The inflammatory cytokine, TNF, was identified as a core target between COVID-19 and T2DM, which induces inflammatory response mainly through the IL-17 signalling pathway, leading to aggravation of infection and increased difficulty in blood glucose control. This study provides a reference for further exploring the potential correlation and endogenous mechanisms between two seemingly independent and unrelated diseases-T2DM and COVID-19.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Humans , Diabetes Mellitus, Type 2/genetics , Interleukin-17 , Computational Biology , Cytokines , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL